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Abstract

Inoue and Solon (2006, A Portmanteau test for serially correlated errors in fixed
effects models, Econometric Theory 22, 835–851) presented an elegant approach to
test for serial correlation of arbitrary form in fixed-effect models for short panel data.
Their approach requires the choice of a regularization parameter that may severely
affect the power of the test and for which no optimal selection rule is available. We
present a modified version of their test that uses strictly more information and does
not require any regularization parameter. Monte Carlo simulations are provided to
illustrate the power gains of our procedure.
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1 Introduction

In panel data models with fixed effects testing whether errors are serially correlated is

complicated by the need to estimate the unit-specific intercepts, especially in short panels.

Tests against (first-order) autoregressive errors have been developed by Baltagi and Wu

(1999), Wooldridge (2002, pp. 275), and Wooldridge (2002, pp. 282–283) and Drukker

(2003). Inoue and Solon (2006) proposed an elegant Portmanteau test, i.e., a procedure to

test against serial correlation of arbitrary form. Such an approach is desirable if no strong

stand can be taken on the particular form of correlation that should serve as the alternative.

This is relevant in many panel data applications, especially when the observations for a

given unit do not have a natural ordering such as time. Indeed, the Monte Carlo work in

Inoue and Solon (2006) aptly illustrates the gain in terms of power of using a Portmanteau

test.

The test of Inoue and Solon (2006) involves the choice of a regularization parameter.

This choice affects the power of the test, possibly quite dramatically. The way in which

it does so, and to what extent, depends on the particular alternative under consideration.

Hence, choosing the regularization parameter amounts to tacking a stand on what type of

alternative one wishes to best arm oneself against. This is at odds with the Portmanteau

paradigm.

We show below that working with this regularization parameter is both inefficient and

unnecessary. A modified Portmanteau test is obtained that uses more information and

does not involve any regularization parameter. Like the original test statistics of Inoue

and Solon (2006), ours is straightforward to implement, and it can be adapted to handle

unbalanced panel data in the same way. Some numerical results on power are provided to

support our claims.

The tests discussed here are designed to be applicable to short panels. A Portmanteau

test for long panels was developed by Okui (2009).
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2 Testing for serial correlation

Suppose we have N × T panel data where, for each randomly sampled unit i = 1, . . . , N ,

we observe the vector of outcomes yi := (yi1, . . . , yiT )′ along with the T × K matrix of

covariates X i : (xi1, . . . ,xiT )′. The standard fixed-effect model for such data specifies that

yi = X iβ + ci ιT + εi,

where ci is unit i’s fixed effect, ιT is the T -vector of ones, and εi := (εi1, . . . , εiT )′ is a

vector of shocks. The latter are taken to be mean-independent of the covariates and the

fixed effect. The standard specification (see, e.g., Wooldridge 2002) additionally assumes

that these latter shocks are homoskedastic and serially uncorrelated. Our interest here lies

in testing this assumption.

2.1 Inoue and Solon’s (2006) Portmanteau test

Using the Lagrange-Multiplier (LM) principle, Inoue and Solon (2006) proposed a simple

test for the null

Σ := E(εiε
′
i) = σ2 IT , (2.1)

where IT is the T ×T identity matrix and σ2 is an unknown positive constant. We assume

throughout that Σ is positive definite. To describe their approach let M := IT − 1
T

(ιT ι
′
T )

be the matrix that transforms observations into deviations from within-group means and

let

β̂ :=

(
N∑
i=1

X ′iMX i

)−1( N∑
i=1

X ′iMyi

)
be the fixed-effect least-squares estimator of β. Under standard regularity conditions,

β̂
p→ β as N → ∞ (and, here and later, T is held fixed). Consequently, the least-squares

residuals, êi := Myi −MX iβ̂, consistently estimate the demeaned shocks ei := Mεi.

Now,

Ω := E(eie
′
i) = MΣM ,
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which, under the null (2.1) equals σ2M . An (unconstrained) plug-in estimator and an

estimator under the null take the form

Ω̂ :=
1

N

N∑
i=1

êiê
′
i, Ω̌ :=

1

N

N∑
i=1

ê′iêi
T − 1

M ,

respectively. A natural way to test (2.1), then, is to evaluate whether their difference can

be considered large (in magnitude) under the null. Note that the within-group operation

implies that ι′Tei = 0 and ι′T êi = 0 for all i. Hence, Ω and the estimators Ω̂ and Ω̌ all

have rank T − 1.

It will prove fruitful to introduce the shorthand

v̂i := vec

(
êiê
′
i −

ê′iêi
T − 1

M

)
.

This allows to write

¯̂v :=
1

N

N∑
i=1

v̂i = vec(Ω̂ − Ω̌), V̂ :=
1

N

N∑
i=1

v̂iv̂
′
i,

The reduced-rank of the covariance matrix estimators implies that V̂ , too, is singular. To

sidestep this issue Inoue and Solon (2006) work with a (T−1)×(T−1) submatrix of Ω̂ and

Ω̌ by dropping their nth row and column, where n is to be chosen. Any such submatrix

involves

m :=
(T − 1)(T − 2)

2

distinct covariances. To state their test statistic introduce the T 2 × m selection matrix

∆n := ∂vec(Ω)/∂vech(Ω−n)′, where Ω−n is the submatrix obtained on deleting the nth

row and column from Ω. The test statistic of Inoue and Solon (2006) can then be written

as

LMn := N ¯̂v
′
∆n(∆′nV̂ ∆n)−1∆′n ¯̂v,

for chosen n ∈ {1, . . . , T}.

Inoue and Solon (2006) derived the large-sample properties of this test statistic under

standard conditions collected in Assumption 1.
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Assumption 1.

(a) X i and εi are i.i.d. and have finite fourth-order moments;

(b) E(εi|X i, ci) = 0;

(c) E(X ′iMX i) is non-singular;

(d) T ≥ 3.

In the sequel, we let V be the probability limit of V̂ , C denotes any symmetric T × T

matrix with zero diagonal and

δ := vec

(
MCM − tr(MC)

T − 1
M

)
,

with its dependence on C left implicit. The following is a restatement of Theorem 1 in

Inoue and Solon (2006).

Theorem 1. Let Assumption 1 hold and suppose that the matrix ∆′nV ∆n is non-singular.

(a) Under the null (2.1),

LMn
d→ χ2

m.

(b) Under a sequence of local alternatives of the form Σ = σ2IT +C/
√
N ,

LMn
d→ χ2

m(γn),

where χ2
m(γn) is a non-central χ2-distribution with m degrees of freedom and non-centrality

parameter γn := δ′∆n(∆′nV ∆n)−1∆′nδ.

The theorem shows that (i) the number of restrictions being tested is m; and (ii) that the

power of the test depends on the choice of n. Inoue and Solon (2006) provide a discussion

on (ii) and illustrate it in their Monte Carlo work.

2.2 A new Portmanteau test

Note that v̂i can be seen as a plug-in estimator of

vi := vec

(
eie
′
i −

e′iei
T − 1

M

)
.
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Now,

E(vi) = vec

(
Ω − σ2

T
M

)
and so the null (2.1) can be equivalently stated as the collection of T 2 moment conditions

E(vi) = 0.

A test based on LMn can be understood as a joint test of a subset of m moment conditions

E(∆′nvi) = 0.

The matrix ∆n serves to resolve the fact that some of the moment conditions are linear

combinations of the others and, hence, redundant. This selection is too severe, however, as

there are

r :=
T (T − 1)

2
− 1

linearly-independent moment conditions and r − m = T − 2. Thus, LMn ignores useful

information.

When T = 3, for example, LMn tests a single moment condition. For n = 1, 2, 3,

respectively, it checks whether

(Ω̂)2,3 − (Ω̌)2,3, (Ω̂)1,3 − (Ω̌)1,3, or (Ω̂)1,2 − (Ω̌)1,2,

is large relative to its standard deviation. The first and third of these test statistics look

at first-order covariances while the second involves a second-order covariance. If serial

dependence is most pronounced at first order, LM2 would have considerably more difficulty

to pick up violations from (2.1) than would LM1 and LM3. However, any pair of these three

moments are linearly independent, and so we may equally test them jointly. While a joint

test need not be more powerful than the most powerful of the LMn tests (as a function

of n), one would expect it to perform at least as well as the worst of the LMn tests and

typically considerably better.

Combining all available moments also avoids the need to choose the regularization

parameter n, making the implementation of the test immune to data snooping. A simple
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way to proceed is to retain all those moments that relate to the lower diagonal part of the

matrix Ω̂ − Ω̌ except for the lower-left entry, i.e., (Ω̂ − Ω̌)T,1.
1 If we let vech(Ω) denote

the operator that returns these lower-diagonal entries for matrix Ω then we can write our

test statistic as

LM := N ¯̂v
′
∆(∆′V̂ ∆)−1∆′ ¯̂v, ∆ := ∂vec(Ω)/∂vech(Ω)′.

The following theorem follows along the same lines as Theorem 1 of Inoue and Solon (2006).

Theorem 2. Let Assumption 1 hold and suppose that the matrix ∆′V ∆ is non-singular.

(a) Under the null (2.1),

LM
d→ χ2

r.

(b) Under a sequence of local alternatives of the form Σ = σ2IT +C/
√
N ,

LM
d→ χ2

r(γ),

where χ2
r(γ) is a non-central χ2-distribution with r degrees of freedom and non-centrality

parameter γ := δ′∆(∆′V ∆)−1∆′δ.

To contrast with Theorem 1 note that Theorem 2 involves testing strictly more moment

conditions and that the limit distributions under both the null and the alternative are

independent of a regularization parameter.

3 Monte Carlo illustration

To illustrate the potential gains from using LM over LMn we conducted a simulation

experiment. Random samples of size N = 100 where drawn from the multivariate normal

distribution N(0,Σ). This corresponds to a simple model with no regressors and all fixed

effects set to zero.

We report results for two types of configurations for Σ and for T ∈ {3, 4}. The first

configuration has dependence between the first and second observation but not between

7



the others, i.e.,

Σ =


1 ρ 0

ρ 1 0

0 0 1

 , Σ =


1 ρ 0 0

ρ 1 0 0

0 0 1 0

0 0 0 1

 ,

for T = 3 and T = 4, respectively. Here, ρ is the correlation between the first and second

measurement. The second configuration considered is a stationary autoregressive process,

i.e.,

Σ =
1

1− ρ2


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

 , Σ =
1

1− ρ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

 ,

where ρ is the autoregressive parameter. Under the null all covariance matrices reduce to

the identity matrix of appropriate dimension.

Figure 1 contains the sampling distributions of the test statistics under the null for

T = 3. From top left to bottom right the plots relate to LM1, LM2, LM3, and finally, LM.

The relevant asymptotic distribution for each statistic is also given in each plot. For the

first three statistics this is the χ2
1 distribution. For the LM statistic it is the χ2

2 distribution.

For each of the statistics the asymptotic approximation is quite satisfactory in light of the

small sample size.

The plots in Figure 2 provide the power functions for all the tests and all configurations

as a function of ρ. The upper two plots concern the non-stationary configuration. The

lower two plots deal with the autoregressive specification. Plots on the left contain power

functions for T = 3. Plots on the right give power functions for T = 4. The power functions

of the LMn tests are dashed and dashed-dotted lines while the power function of the LM

test is marked by a full line. In our designs the power functions of several of the LMn tests

overlap so that only two distinct curves are visible in each plot. The plots also include a

dashed horizontal line at the chosen significance level of 5%.

The plots clearly show that the choice of the regularization parameter n can have quite
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Figure 1: Sampling distributions under the null
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Figure 2: Power functions
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dramatic effects on power. For example, in the upper-left plot LM3 picks up violations

from the null much more frequently than do LM1 and LM2 while in the lower-left plot both

LM1 and LM3 have much lower power than LM2. The plots on the right concern four LMn

tests, and each one of the two functions plotted corresponds to two of these tests. The joint

LM test always does considerably better than the worst of the LMn tests. Moreover, in all

but the last design it is only marginally less powerful than the strongest of the LMn tests.

When T = 4 the LM test is actually the most powerful against autoregressive alternatives

of all the tests considered, and this uniformly over all ρ in (−1, 1); the difference with the

most powerful LMn test is, nonetheless, small.

Notes

1Other choices are possible. All give numerically the same test statistic.
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